证明∫sin(x)n次方cos(x)n次方dx等于2的-n次方
(cos^4x-cos^6x )dx=?
int sin^2xdx=\int \frac{1-cos2x}2dx=\frac{x}2-\frac{sin2x}4 c
∫cot^{2}xdx=
求广义积分 ∫(0到正无穷)e^(-x)(cos ax-cos bx)/x dx ,b>a>0.
证明∫sin(x)n次方cos(x)n次方dx等于2的-n次方
(cos^4x-cos^6x )dx=?
int sin^2xdx=\int \frac{1-cos2x}2dx=\frac{x}2-\frac{sin2x}4 c
∫cot^{2}xdx=
求广义积分 ∫(0到正无穷)e^(-x)(cos ax-cos bx)/x dx ,b>a>0.